بررسی عوامل مرتبط با سوختگی با استفاده از الگوریتم‌های طبقه‌بندی در داده‌کاوی و برآورد کسر قابل انتساب جمعیت در کودکان استان کرمانشاه، سال 1395

Assessment of factors associated with burn using data mining classification algorithms and estimating population attributable fraction in pediatric of Kermanshah province, 2016


چاپ صفحه
پژوهان
صفحه نخست سامانه
مجری و همکاران
مجری و همکاران
منابع
منابع
علوم پزشکی شهید بهشتی
علوم پزشکی شهید بهشتی

مجریان: حمید سوری , یداله محرابی

کلمات کلیدی: سوختگی کودکان، داده‌کاوی، جزء قابل انتساب جمعیت

اطلاعات کلی طرح
hide/show

کد طرح 11480
عنوان فارسی طرح بررسی عوامل مرتبط با سوختگی با استفاده از الگوریتم‌های طبقه‌بندی در داده‌کاوی و برآورد کسر قابل انتساب جمعیت در کودکان استان کرمانشاه، سال 1395
عنوان لاتین طرح Assessment of factors associated with burn using data mining classification algorithms and estimating population attributable fraction in pediatric of Kermanshah province, 2016
کلمات کلیدی سوختگی کودکان، داده‌کاوی، جزء قابل انتساب جمعیت
نوع طرح کاربردی
نوع مطالعه مورد-شاهد
مدت اجراء - روز 365
ضرورت انجام تحقیق کودکان به خاطر فیزیک بدنشان، درک پایین‌تر از خطر و کندی عمل در واکنش به خطرات به‌عنوان گروه مستعد ابتلا به سوختگی می‌باشند. در رابطه با عوامل خطر اقتصادی-اجتماعی و همچنین متغیرهای محیطی سوختگی کودکان، مطالعات کمتری انجام‌شده است. روش‌ها و الگوریتم‌های مرتبط با داده‌کاوی ازآنجاکه جزء روش‌های تحلیلی ناپارامتریک بوده و کمتر متأثر از پیش‌فرض‌هایی مثل نرمالیتی و برابری واریانس‌ها بوده امروزه علاقه‌مندی بیشتری در بین محققان در استفاده از آن‌ها دیده می‌شود. در اکثر اوقات مدل‌های پارامتریکی برهم‌کنش‌ها را در برنمی‌گیرند تا به‌وسیله آن نشان دهند که حضور یا عدم حضور یک متغیر چه اندازه بر سایر فاکتورها اثرگذار است. در مقابل بسیاری از روشهای داده کاوی به‌طور اختصاصی برای چنین برهم‌کنش‌هایی طراحی‌شده‌اند. عوامل خطر سوختگی در جوامع مختلف، متفاوت می‌باشد. برای برنامه‌ریزی و اجرای برنامه‌های پیشگیری، مشخصه‌های اپیدمیولوژی سوختگی و عوامل خطر مرتبط با آن باید در هر جامعه‌ای به‌صورت جداگانه مشخص شود.
هدف کلی تعیین عوامل خطر مرتبط با سوختگی با استفاده از الگوریتم‌های طبقه‌بندی در داده‌کاوی و برآورد کسر قابل انتساب جمعیت در کودکان استان کرمانشاه در سال 1395
خلاصه روش کار مواردی که در طول یک سال به اورژانس سوختگی بیمارستان امام خمینی (ره) به‌عنوان مرکز سوختگی مرجع استان مراجعه کنند به‌عنوان مورد (case) وارد مطالعه می‌شوند. و کودکان مراجعه‌کننده به بیمارستان‌ دکتر محمد کرمانشاهی (بیمارستان تخصصی و فوق تخصصی کودکان استان کرمانشاه) که به دلیلی غیر از حوادث به این مراکز مراجعه کرده‌اند به‌عنوان شاهد(control) وارد مطالعه می‌شوند. بعد از جمع‌آوری اطلاعات، رگرسیون لجستیک و الگوریتم‌های طبقه‌بندی در داده‌کاوی ازجمله درخت تصمیم(CART, QUEST, C4.5, CHAID)، شبکه عصبی مصنوعی، ماشین بردار پشتیبان و جنگل تصادفی (Random Forest)، بر روی این داده‌ها اجرا می‌شود. بر اساس روش‌های مختلف ارزیابی اعتبار- حساسیت، ویژگی، صحت، PPV، NPV و G-mean و F-measure و ROC curve این الگوریتم‌ها باهم مقایسه شده و بهترین مدل انتخاب می‌شود. در صورتی که تفاوت در بین شاخص‌های مختلف در تصمیم‌گیری انتخاب بهترین مدل اشکال ایجاد کند تصمیم‌گیری نهایی بر مبنای شاخص سطح زیرمنحنی خواهد بود. پس از انتخاب بهترین مدل، متغیرهای مهم معرفی‌شده توسط این مدل وارد مدل رگرسیون لجستیک شده و مقادیر درصد خطر قابل انتساب جمعیت برای هرکدام از آن‌ها محاسبه می‌شود.

اطلاعات مجری و همکاران
hide/show

نام و نام‌خانوادگی سمت در طرح نوع همکاری درجه‌تحصیلی پست الکترونیک
حمید سوریمجری اصلیاستاد راهنمای اولدکترای تخصصی پی اچ دیhsoori@yahoo.com
یداله محرابیمجریاستاد راهنمای اولدکترای تخصصی پی اچ دیmehrabi@sbmu.ac.ir
عذرا رمضانخانیهمکارمشاور طرحدکترای تخصصی پی اچ دیma.ramezankhani@gmail.com
سهیلا کزازیهمکارهمکاری در جمع آوری اطلاعات sohailakazazi@yahoo.com
عباس آقائیهمکاردانشجوفوق لیسانسaghaiianbbas@gmail.com

منابع
hide/show

1. Mathers C, Fat DM, Boerma JT. The global burden of disease: 2004 update: World Health Organization; 2008. 2. Olaitan P, Olaitan J. Burns and scalds--epidemiology and prevention in a developing country. Nigerian journal of medicine: journal of the National Association of Resident Doctors of Nigeria2004. p. 9-16. 3. Ansari-Lari M, Askarian M. Epidemiology of burns presenting to an emergency department in Shiraz, South Iran. Burns. 2003;29(6):579-81. 4. Anlatıcı R, Özerdem Ö, Dalay C, Kesiktaş E, Acartürk S, Seydaoǧlu G. A retrospective analysis of 1083 Turkish patients with serious burns: part 2: burn care, survival and mortality. Burns. 2002;28(3):239-43. 5. Afrasiabi Far A, Karimi Z. Causes and materials of burning among the patients hospitalized in Yasuj Shahid Beheshti Hospital. Armaghane‑danesh J Yasuj Univ Med Sci. 2002;7:39-46. 6. Mashreky SR, Rahman A, Chowdhury S, Giashuddin S, Svanström L, Linnan M, et al. Epidemiology of childhood burn: yield of largest community based injury survey in Bangladesh. Burns. 2008;34(6):856-62. 7. Edelman LS. Social and economic factors associated with the risk of burn injury. Burns. 2007;33(8):958-65. 8. McLatchie G, Borley N, Chikwe J. Oxford handbook of clinical surgery. 4th ed.: Oxford University Press; 2013. 9. Alaghehbandan R, Sikdar KC, Gladney N, MacDonald D, Collins KD. Epidemiology of severe burn among children in Newfoundland and Labrador, Canada. Burns. 2012;38(1):136-40. 10. Injuries WHO, Dept VP. The injury chart book: A graphical overview of the global burden of injuries: World Health Organization; 2002. 11. Bang RL, Ebrahim MK, Sharma PN. Scalds among children in Kuwait. European Journal of Epidemiology. 1997;13(1):33-9. 12. Krug EG. Injury surveillance is key to preventing injuries. The Lancet. 2004;364(9445):1563-6. 13. Moore P, Moore M, Blakeney P, Meyer W, Murphy L, Herndon D. Competence and physical impairment of pediatric survivors of burns of more than 80% total body surface area. Journal of Burn Care & Research. 1996;17(6):547-51. 14. Hyder AA, Sugerman DE, Puvanachandra P, Razzak J, El-Sayed H, Isaza A, et al. Global childhood unintentional injury surveillance in four cities in developing countries: a pilot study. Bulletin of the World Health Organization. 2009;87(5):345-52. 15. Peck MD. Epidemiology of burns throughout the world. Part I: Distribution and risk factors. Burns. 2011;37(7):1087-100. 16. Mashreky SR, Rahman A, Chowdhury S, Giashuddin S, Svanström L, Linnan M, et al. Consequences of childhood burn: findings from the largest community-based injury survey in Bangladesh. Burns. 2008;34(7):912-8. 17. Mashreky SR, Rahman A, Chowdhury S, Giashuddin S, Svanström L, Khan T, et al. Burn injury: economic and social impact on a family. Public health. 2008;122(12):1418-24. 18. Karimi H, Montevalian A, Motabar A, Safari R, Parvas M, Vasigh M. Epidemiology of paediatric burns in Iran. Annals of burns and fire disasters. 2012;25(3):115. 19. Keswani MH. THE 1996 EVERETT IDRIS EVANS MEMORIAL LECTURE: The Cost of Burns and the Relevance of Prevention. Journal of Burn Care & Research. 1996;17(6):485-90. 20. DIMICK AR, POTTS LH, CHARLES Jr ED, WAYNE J, REED IM. The cost of burn care and implications for the future on quality of care. Journal of Trauma and Acute Care Surgery. 1986;26(3):260-5. 21. Maghsoudi H, Samnia N. Etiology and outcome of pediatric burns in Tabriz, Iran. Burns. 2005;31(6):721-5. 22. Taghavi M, Rasouli MR, Boddouhi N, Zarei MR, Khaji A, Abdollahi M. Epidemiology of outpatient burns in Tehran: an analysis of 4813 cases. Burns. 2010;36(1):109-13. 23. Torabian S, Saba MS. Epidemiology of paediatric burn injuries in Hamadan, Iran. Burns. 2009;35(8):1147-51. 24. Mirmohammadi SJ, Mehrparvar AH, Jalilmanesh M, Kazemeini K, Delbari N, Mostaghaci M. An epidemiologic survey on burns in Yazd from 2008 till 2009. Acta Medica Iranica. 2012;50(1):70-5. 25. Matin BK, Matin RK, Joybari TA, Ghahvehei N, Haghi M, Ahmadi M, et al. Epidemiological data, outcome, and costs of burn patients in Kermanshah. Annals of burns and fire disasters. 2012;25(4):171. 26. Panjeshahin M-R, Lari AR, Talei A-R, Shamsnia J, Alaghehbandan R. Epidemiology and mortality of burns in the South West of Iran. Burns. 2001;27(3):219-26. 27. Tabiee S, NAKHAEI M. Epidemiology of burn patients In emam reza Hospital, Birjand, 1998-2002. 2004. 28. Soltani K, Zand R, Mirghasemi A. Epidemiology and mortality of burns in Tehran, Iran. Burns. 1998;24(4):325-8. 29. Lari AR, Panjeshahin M-R, Talei A-R, Rossignol AM, Alaghehbandan R. Epidemiology of childhood burn injuries in Fars province, Iran. Journal of Burn Care & Research. 2002;23(1):39-45. 30. Lari AR, Alaghehbandan R, Nikui R. Epidemiological study of 3341 burns patients during three years in Tehran, Iran. Burns. 2000;26(1):49-53. 31. Groohi B, Alaghehbandan R, Lari AR. Analysis of 1089 burn patients in province of Kurdistan, Iran. Burns. 2002;28(6):569-74. 32. Saadat M. Epidemiology and mortality of hospitalized burn patients in Kohkiluye va Boyerahmad province (Iran): 2002–2004. Burns. 2005;31(3):306-9. 33. Arshi S, Sadeghi-Bazargani H, Mohammadi R, Ekman R, Hudson D, Djafarzadeh H, et al. Prevention oriented epidemiologic study of accidental burns in rural areas of Ardabil, Iran. Burns. 2006;32(3):366-71. 34. Rajabian MH, Aghaei S, Fouladi V. Analysis of survival and hospitalization time for 2057 burn patients in Shiraz, southwestern Iran. Medical Science and Technology. 2007;13(8):CR353-CR5. 35. Baldursdottir L, Thorsteinsson LS, Auðólfsson G, Baldursdottir ME, Sigurvinsdottir BO, Gisladottir V, et al. [Burn injuries in children: admissions at Landspitali University Hospital in Iceland 2000-2008]. Laeknabladid. 2010;96(11):683-9. 36. Cubbin C, Smith GS. Socioeconomic inequalities in injury: critical issues in design and analysis. Annual review of public health. 2002;23(1):349-75. 37. Van Niekerk A, Reimers A, Laflamme L. Area characteristics and determinants of hospitalised childhood burn injury: a study in the city of Cape Town. Public health. 2006;120(2):115-24. 38. Austin PC, Tu JV, Ho JE, Levy D, Lee DS. Using methods from the data-mining and machine-learning literature for disease classification and prediction: a case study examining classification of heart failure subtypes. Journal of clinical epidemiology. 2013;66(4):398-407. 39. Noori S, Nourijelyani K, Mohammad K, Niknam MH, Mahmoudi M, Andonian L, et al. Random Forests Analysis: A modern statistical method for screening in high-dimensional studies and its application in a population-based genetic association study. Journal of North Khorasan University of Medical Sciences. 2011;3(5):93-101. 40. Austin PC. A comparison of regression trees, logistic regression, generalized additive models, and multivariate adaptive regression splines for predicting AMI mortality. Statistics in medicine. 2007;26(15):2937-57. 41. Trevor H, Robert T, Jerome F. The elements of statistical learning: data mining, inference and prediction. New York: Springer-Verlag. 2001;1(8):371-406. 42. Strobl C, Malley J, Tutz G. An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychological methods. 2009;14(4):323. 43. Rossi A, Amaddeo F, Sandri M, Tansella M. Determinants of once-only contact in a community-based psychiatric service. Social psychiatry and psychiatric epidemiology. 2005;40(1):50-6. 44. Freedman DA, Freedman DA. A note on screening regression equations. the american statistician. 1983;37(2):152-5. 45. Derksen S, Keselman H. Backward, forward and stepwise automated subset selection algorithms: Frequency of obtaining authentic and noise variables. British Journal of Mathematical and Statistical Psychology. 1992;45(2):265-82. 46. Austin PC, Tu JV. Automated variable selection methods for logistic regression produced unstable models for predicting acute myocardial infarction mortality. Journal of clinical epidemiology. 2004;57(11):1138-46. 47. Marshall RJ. The use of classification and regression trees in clinical epidemiology. Journal of clinical epidemiology. 2001;54(6):603-9. 48. Biriya M, Arshi S, Sadeghi H, Malek-Pour N. Burn factors in children under six years in rural areas of Ardabil city 2003. Ardebil University of Medical sciences Journal.8(1):14-9. 49. Rafiei M, Memarzadeh M, HOSSEINPOUR M. Evaluation of burn epidemiology in children hospitalized in Esfahan province during the recent two years. 2007. 50. Unicef. Convention on the Rights of the Child. 1989. 51. Borse N, Sleet DA. CDC Childhood Injury Report: Patterns of Unintentional Injuries Among 0‐to 19‐Year Olds in the United States, 2000–2006. Family & community health. 2009;32(2):189. 52. Baker S, O'neill B, Ginsburg M, Li G. The injury fact book, 1992. Oxford University Press, New York. 1992. 53. Gu W, Vieira A, Hoekstra R, Griffin P, Cole D. Use of random forest to estimate population attributable fractions from a case-control study of Salmonella enterica serotype Enteritidis infections. Epidemiology and infection. 2015;143(13):2786-94. 54. Alizadehsani R, Habibi J, Hosseini MJ, Mashayekhi H, Boghrati R, Ghandeharioun A, et al. A data mining approach for diagnosis of coronary artery disease. Computer methods and programs in biomedicine. 2013;111(1):52-61. 55. Ghasem Ahmad L. overview on 7 top data mining algorithms to prediction of survival, diagnosis and relapse in patients with breast cancer. Iranian Journal of Breast Diseases. 2013;6(1):52-61. 56. Golnar R. Compare SVM and logistic regression modeling to estimate the risk of death in patients hospitalized in intensive care unit. central Library: Shahid Beheshti University of Medical Sciences; 2014. 57. Sedehi M, Mehrabi Y, Kazemnejad A, Hadaegh F. Comparison of artificial neural network, logistic regression and discriminant analysis methods in prediction of metabolic syndrome. Iranian journal of endocrinology and metabolism. 2010;11(6):638-46, 731. 58. Ramezankhani A, Pournik O, Shahrabi J, Khalili D, Azizi F, Hadaegh F. Applying decision tree for identification of a low risk population for type 2 diabetes. Tehran Lipid and Glucose Study. Diabetes research and clinical practice. 2014;105(3):391-8. 59. Patil BM, Joshi RC, Toshniwal D, Biradar S. A new approach: role of data mining in prediction of survival of burn patients. Journal of medical systems. 2011;35(6):1531-42. 60. Nabovati E, Azizi A, Abbasi E, Vakili-Arki H, Zarei J, Razavi A. Using data mining to predict outcome in burn patients: a comparison between several algorithms. Health Inf Manage. 2014;10(6):799. 61. Vineis P, Rainoldi A. Neural networks and logistic regression: Analysis of a case-control study on myocardial infarction. Journal of clinical epidemiology. 1997;50(11):1309-10. 62. O’Bryant SE, Xiao G, Barber R, Reisch J, Doody R, Fairchild T, et al. A serum protein–based algorithm for the detection of Alzheimer disease. Archives of neurology. 2010;67(9):1077-81. 63. Mash C, Frazier T, Nowacki A, Worley S, Goldfarb J. Development of a risk-stratification tool for medical child abuse in failure to thrive. Pediatrics. 2011;128(6):e1467-e73. 64. Tseng W-J, Hung L-W, Shieh J-S, Abbod MF, Lin J. Hip fracture risk assessment: artificial neural network outperforms conditional logistic regression in an age-and sex-matched case control study. BMC musculoskeletal disorders. 2013;14(1):1. 65. Silvera SAN, Mayne ST, Gammon MD, Vaughan TL, Chow W-H, Dubin JA, et al. Diet and lifestyle factors and risk of subtypes of esophageal and gastric cancers: classification tree analysis. Annals of epidemiology. 2014;24(1):50-7. 66. Tam O, Lam S, Shum H, Lau C, Chan KK, Yan W. Characteristics of patients readmitted to intensive care unit: a nested case-control study. Hong Kong Med J. 2014;20(3):194-204. 67. Moussu L, Saint-Pierre P, Panayotopoulos V, Couderc R, Amat F, Just J. Determinants of allergic rhinitis in young children with asthma. PloS one. 2014;9(5):e97236. 68. Andaieshgar b, Sedehi m, Kheiri s, Farahani nm. Comparsion of classical discriminant methods with artificial neural network using different algoritm to the diagnosis of myocardial infarction. J Health Syst Res. 2015;١1(2):359-49. 69. Hunter A, Kennedy L, Henry J, Ferguson I. Application of neural networks and sensitivity analysis to improved prediction of trauma survival. Computer methods and programs in biomedicine. 2000;62(1):11-9. 70. Chong AY-L. Predicting m-commerce adoption determinants: A neural network approach. Expert Systems with Applications. 2013;40(2):523-30. 71. Garde A, Voss A, Caminal P, Benito S, Giraldo BF. SVM-based feature selection to optimize sensitivity–specificity balance applied to weaning. Computers in biology and medicine. 2013;43(5):533-40. 72. Biriya M, Arshi S, Sadeghi H, Malekpour N. Burn factors in children under six year in rural areas of Ardabil in 2003. journal of Ardabil University of Medical Sciences. 2008;8(1):14-9. 73. Sadeghi-Bazargani H, Mohammadi R, Amiri S, Syedi N, Tabrizi A, Irandoost P, et al. Individual-level predictors of inpatient childhood burn injuries: a case–control study. BMC public health. 2016;16(1):1. 74. Othman N, Kendrick D. Risk factors for burns at home in Kurdish preschool children: a case-control study. Injury prevention. 2013;19(3):184-90. 75. Clark L, Pregibon D. Tree-based methods. Modern Applied Statistics with S-PLUS. 1993:413-30. 76. Winter K, Zipprich J, Harriman K, Murray EL, Gornbein J, Hammer SJ, et al. Risk factors associated with infant deaths from pertussis: a case-control study. Clinical Infectious Diseases. 2015;61(7):1099-106. 77. Einhorn HJ. Alchemy in the behavioral sciences. Public Opinion Quarterly. 1972;36(3):367-78. 78. Loh WY. Fifty years of classification and regression trees. International Statistical Review. 2014;82(3):329-48. 79. Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and regression trees: CRC press; 1984. 80. Kass GV. An exploratory technique for investigating large quantities of categorical data. Applied statistics. 1980;29(2):119-27. 81. Quinlan JR. C4. 5: Programming for machine learning. Morgan Kauffmann. 1993:38. 82. Loh W-Y, Vanichsetakul N. Tree-structured classification via generalized discriminant analysis. Journal of the American Statistical Association. 1988;83(403):715-25. 83. Breiman L. Random forests. Machine learning. 2001;45(1):5-32. 84. Larose DT. Discovering knowledge in data: an introduction to data mining: John Wiley & Sons; 2014. 85. Mohammad Fiuzy, Javad Haddadnia, Nasrin Mollania, zedeh MM. The prediction of correct dose of insulin in Melitus patient by using Artificial Intellegent System and Data Mining algoritm Iranian journal of Diabetes and Metabolism. 2015;14(6):418-30. 86. Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Machine learning. 2002;46(1-3):389-422. 87. Jiang Y, Lin J, Cukic B, Menzies T, editors. Variance analysis in software fault prediction models. 2009 20th International Symposium on Software Reliability Engineering; 2009: IEEE. 88. Espíndola R, Ebecken N. On extending f-measure and g-mean metrics to multi-class problems. WIT Transactions on Information and Communication Technologies. 2005;35. 89. Cimino JJ, Shortliffe EH. Biomedical Informatics: Computer Applications in Health Care and Biomedicine (Health Informatics): Springer-Verlag New York, Inc.; 2006.