بررسی سمیت خارج از بدن نانولوله کربنی چند دیواره در رده سلول های اپتلیال ریه انسان (A549) و تاثیر آن بر سمیت بنزوآلفا پیرن

Investigation of in-vitro toxicity of multi walled carbon nanotubes in human lung cell lines (A549) and its effect on toxicity of benzo (α) pyrene


چاپ صفحه
پژوهان
صفحه نخست سامانه
مجری و همکاران
مجری و همکاران
منابع
منابع
علوم پزشکی شهید بهشتی
علوم پزشکی شهید بهشتی

مجریان: منصور رضا زاده آذری , یوسف محمدیان

کلمات کلیدی: سم شناسی سلولی خارج از بدن، رده سلولی A549 ریه، نانولوله کربنی چند دیواره ، بنرو آلفاپیرن

اطلاعات کلی طرح
hide/show

کد طرح 8974
عنوان فارسی طرح بررسی سمیت خارج از بدن نانولوله کربنی چند دیواره در رده سلول های اپتلیال ریه انسان (A549) و تاثیر آن بر سمیت بنزوآلفا پیرن
عنوان لاتین طرح Investigation of in-vitro toxicity of multi walled carbon nanotubes in human lung cell lines (A549) and its effect on toxicity of benzo (α) pyrene
کلمات کلیدی سم شناسی سلولی خارج از بدن، رده سلولی A549 ریه، نانولوله کربنی چند دیواره ، بنرو آلفاپیرن
نوع طرح بنیادی-کاربردی
نوع مطالعه مورد-شاهد
مدت اجراء - روز 540
ضرورت انجام تحقیق ذرات نانو لوله کربنی کاربردهای زیادی در بخشهای مختلف صنعت از قبیل الکترونیک، ساختمان، هوافضا، شیمیایی، کامپوزیت های پلی مری، نساجی، محصولات ورزشی، داروسازی و پزشکی دارد. مواجهه با نانو ذرات نانو لوله های کربنی در مراکز تولیدی و تحقیقاتی وجود دارد. در صنایع تولید کننده نانو لوله های کربنی و هوای داخل شهر ها مواجهه توام نانو لوله کربنی چند دیواره و بنزو آلفا پیرن نیز وجود دارد. در مورد سمیت نانوله های کربنی با توجه به ناخالصی، عامل دار بودن و سایز ابهاماتی وجود دارد، همچنین در مورد تاثیر مواجهه توام نانو لوله کربنی چند دیواره و بنزو آلفا پیرن بر انسان مطالعه ای صورت نگرفته است. این مطالعه با هدف بررسی سمیت(فعالیت آنزیم میتوکندری، آپوپتوزیس، لیپید پراکسیداسیون) ذرات نانو لوله کربنی و سمیت توام نانو لوله کربنی و بنزو آلفا پیرن بر سلولهای اپیتلیال ریه انسان انجام خواهد شد.
هدف کلی تعیین سمیت خارج از بدن ذرات نانو لوله کربنی چند دیواره در رده سلول های ریه انسان (A549) و تاثیر آن بر سمیت بنزوآلفا پیرن
خلاصه روش کار ذرات نانو لوله کربنی چند دیواره از پژوهشگاه صنعت نفت خریداری خواهد شد. بنزو آلفا پیرن خالص نیز خریداری خواهد شد. خصوصیات فیزیکوشیمیایی نانوذرات از قبیل اندازه، ناخالصی و مساحت سطح با استفاده از TEM ، SEM ، ICP و BET و FTIR بررسی خواهد شد. بعد از تعیین مشخصات نانوذرات محلول سوسپانسیون نانوذرات با غلظت های مختلف تهیه خواهد شد. رده سلولی اپیتلیال ریه انسان(A549) از بانک سلولی انستیتو پاستور خریداری و در محیط کشت DMEM در انکوباتور کشت داده خواهند شد. سلولهای ریه تحت مواجهه با غلظت های مختلف نانو لوله کربنی چند دیواره، بنزوآلفا پیرن، و توام نانو لوله کربنی چند دیواره و بنزو آلفا پیرن قرار خواهند گرفت. جهت ارزیابی سمیت: از روش MTT assay به منظور ارزیابی فعالیت آنزیم های میتوکندر ی و جهت ارزیابی آپوپتوزیس از روش Annexin V/PI staining استفاده خواهد گردید، جهت ارزیابی لیپید پراکسیداسیون میزان مالان دی آلدهید اندازه گیری خواهد شد.

اطلاعات مجری و همکاران
hide/show

نام و نام‌خانوادگی سمت در طرح نوع همکاری درجه‌تحصیلی پست الکترونیک
منصور رضا زاده آذریمجری اصلیاستاد راهنمای اولدکترای تخصصی پی اچ دیmrazari@sbmu.ac.ir
یوسف محمدیانمجریاجراء طرح mohammadian_yosef@yahoo.com
یداله محرابیهمکارمشاور طرحدکترای تخصصی پی اچ دیmehrabi@sbmu.ac.ir
فریبا خداقلیهمکارمشاور طرحدکترای تخصصی پی اچ دیkhodagholi@sbmu.ac.ir

منابع
hide/show

. 1. Rashidi, A.M. Continuous process for producing carbon nanotubes Patent (Patent # 9,206,050) Continuous process for producing carbon nanotubes. 2007; Available from: http://patents.justia.com/patent/9206050. 2. Ebbesen, T., et al., Electrical conductivity of individual carbon nanotubes. 1996. 3. Donaldson, K., et al., Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicological Sciences, 2006. 92(1): p. 5-22. 4. Gwinn, M.R. and V. Vallyathan, Nanoparticles: health effects: pros and cons. Environmental health perspectives, 2006: p. 1818-1825. 5. Holman, M.W. and D.L. Lackner, The Nanotech Report, ed. t. edn. 2006, New York: Lux Research. 6. Radley, J., M.M. Nordan, and O. Tassinari, The Recession’s Ripple Effect on Nanotech Book 2009, Boston: MA: Lux Research, Inc. 7. Han, J.H., et al., Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhalation toxicology, 2008. 20(8): p. 741-749. 8. Oberdörster, G., E. Oberdörster, and J. Oberdörster, Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental health perspectives, 2005: p. 823-839. 9. Papp, T., et al., Human health implications of nanomaterial exposure. Nanotoxicology, 2008. 2(1): p. 9-27. 10. Erdely, A., et al., Carbon nanotube dosimetry: from workplace exposure assessment to inhalation toxicology. Part Fibre Toxicol, 2013. 10: p. 53. 11. Maynard, A.D., et al., Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. Journal of Toxicology and Environmental Health, Part A, 2004. 67(1): p. 87-107. 12. Yeganeh, B., et al., Characterization of airborne particles during production of carbonaceous nanomaterials. Environmental science & technology, 2008. 42(12): p. 4600-4606. 13. Boonruksa, P., et al., Characterization of Potential Exposures to Nanoparticles and Fibers during Manufacturing and Recycling of Carbon Nanotube Reinforced Polypropylene Composites. Ann Occup Hyg, 2016. 60(1): p. 40-55. 14. Köhler, A., et al., Studying the potential release of carbon nanotubes throughout the application lifecycle. Journal of Cleaner Production, 2008. 16(9): p. 927 – 937. 15. Lukas, S., N. Frank, and W. Jing, Release of Carbon Nanotubes from Polymer Nanocomposites. Fibers, 108-127. 2. 16. Stacey, H., et al., Measuring Nanomaterial Release from Carbon Nanotube Composites: Review of the State of the Science. Journal of Physics: Conference Series 2015. 617: p. 12-26. 17. Maynard, A., et al., Safe handling of nanotechnology. NATURE-LONDON-, 2006. 444(7117): p. 267. 18. Wautelet, M., J. Dauchot, and M. Hecq, Size effects on the phase diagrams of nanoparticles of various shapes. Materials Science and Engineering: C, 2003. 23(1): p. 187-190. 19. Dreher, K.L., Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicological Sciences, 2004. 77(1): p. 3-5. 20. Shvedova, A., et al., Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. Journal of toxicology and environmental health Part A, 2003. 66(20): p. 1909-1926. 21. Hedwig, M.B., et al., Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Particle and Fibre Toxicology, 2014: p. 1-25. 22. Stefano, B., et al., Biological Effects of Functionalized Multi-Walled Carbon Nanotubes on Human Cancer and Normal Cell Lines. Jacobs Journal of Nanomedicine and Nanotechnology, 2014. 1(1). 23. Prem, K., et al., Cytotoxicity of carbon nanotube variants: A comparative in vitro exposure study with A549 epithelial and J774 macrophage cells. Nanotoxicology, 2015: p. 1-14. 24. Raymond, F.H., et al., Effect of MWCNT size, carboxylation, and purification on in vitro and in vivo toxicity, inflammation and lung pathology. Particle and Fibre Toxicology, 2013. 10(57). 25. Liu, Z., et al., Carboxylation of multiwalled carbon nanotube enhanced its biocompatibility with L02 cells through decreased activation of mitochondrial apoptotic pathway. J Biomed Mater Res A, 2014. 102(3): p. 665-73. 26. Maria, M., et al., Carboxylated Short Single-Walled Carbon Nanotubes But Not Plain and Multi-walled Short Carbon Nanotubes Show in vitro Genotoxicity. Toxicol Sci, 2015. 144(1): p. 114–127. 27. Nivedita, C., et al., Potential Toxicity of Differential Functionalized Multiwalled Carbon Nanotubes (MWCNT) in Human Cell Line (BEAS2B) and Caenorhabditis elegans. Journal of Toxicology and Environmental Health, Part A: Current Issues, 2014. 77(22-14): p. 1399-1408. 28. Ursini, C.L., et al., Evaluation of uptake, cytotoxicity and inflammatory effects in respiratory cells exposed to pristine and -OH and -COOH functionalized multi-wall carbon nanotubes. J Appl Toxicol, 2015. 36(3): p. 394-403. 29. Vitkina, T.I., et al., The impact of multi-walled carbon nanotubes with different amount of metallic impurities on immunometabolic parameters in healthy volunteers. Food and Chemical Toxicology, 2016. 87: p. 138e147. 30. Aparna, S. and S.J.T. Candace, Toxicity mechanism in fetal lung fibroblast cells for multi-walled carbon nanotubes defined by chemical impurities and dispersibility Toxicol. Res, 2016. 5: p. 248-258. 31. Goornavar, V., et al., Toxicity of Raw and Purified Single-Walled Carbon Nanotubes in Rat's Lung Epithelial and Cervical Cancer Cells. J Nanosci Nanotechnol., 2015. 15(3): p. 2105-14. 32. Nilsen, L., Cytotoxic and Inflammatory Responses of Human Lung Cells Exposed to Multiwalled Carbon Nanotubes. 2011, Norwegian University of Science and Technology. 33. Khalid, P., et al., Toxicology of Carbon Nanotubes - A Review. International Journal of Applied Engineering Research, 2016. 11(1): p. 159. 34. Johnston, H.J., et al., A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Critical reviews in toxicology, 2010. 40(4): p. 328-346. 35. Ju-Nam, Y. and J.R. Lead, Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Science of the Total Environment, 2008. 400(1): p. 396-414. 36. Li, N., T. Xia, and A.E. Nel, The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radical Biology and Medicine, 2008. 44(9): p. 1689-1699. 37. Stone, V., H. Johnston, and M.J. Clift, Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions. IEEE transactions on nanobioscience, 2007. 6(4): p. 331. 38. SHVEDOVA, A.A., et al., Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. American Journal of Physiology, Lung Cellular and Molecular Physiology, 2008. 295: p. 552-65. 39. Shvedova, A.A., et al., Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicology and applied pharmacology, 2012. 261(2): p. 121-133. 40. Li, J.J., et al., Nanoparticle-induced pulmonary toxicity,”. Experimental Biology and Medicine, 2010. 235(9): p. 1025–1033. 41. Kennedy, I.M., D. Wilson, and A.I. Barakat, Uptake and inflammatory effects of nanoparticles in a human vascular endothelial cell line. Research report (Health Effects Institute), 2009(136): p. 3-32. 42. Lee, H.-M., et al., Nanoparticles up-regulate tumor necrosis factor-α and CXCL8< i> via</i> reactive oxygen species and mitogen-activated protein kinase activation. Toxicology and applied pharmacology, 2009. 238(2): p. 160-169. 43. Zhang, Z., et al., On the interactions of free radicals with gold nanoparticles. Journal of the American Chemical Society, 2003. 125(26): p. 7959-7963. 44. P, K., et al., DNA adduct 8-hydroxydeoxyguanosine, a novel putative marker of prognostic significance in ovarian carcinoma. International Journal of Gynecological Cancer, 2009. 19(6): p. 1047–1051. 45. Saud , A. and A. Daoud, Mechanisms of Multi-walled Carbon Nanotubes–Induced Oxidative Stress and Genotoxicity in Mouse Fibroblast Cell. International Journal of Toxicology, 2015: p. 1-8. 46. Giuseppa, V., et al., Toxicological assessment of multi-walled carbon nanotubes on A549 human lung epithelial cells. Toxicology in Vitro, 2015. 29(2): p. 352–362. 47. DURÁN, N., S.S. GUTERRES, and O.L. ALVES, Nanotoxicology. 2014, New York: Springer Science & Business Media. 48. Makoto, E., A review of toxicity studies of single-walled carbon nanotubes in laboratory animals. Regulatory Toxicology and Pharmacology, 2015. 49. Lamberti, M., et al., Carbon nanotubes: Properties, biomedical applications, advantages and risks in patients and occupationallyexposed workers. International Journal of Immunopathology and Pharmacology, 2015. 28(1): p. 4-13. 50. Amruta, M., L. Sudjit, and R. Yon Potential Occupational Risks Associated with Pulmonary Toxicity of Carbon Nanotubes. Occup Med Health Aff, 2014. 2. 51. Poland, C.A., et al., Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature nanotechnology, 2008. 3(7): p. 423-428. 52. Sakamoto, Y., et al., Induction of mesothelioma by a single intrascrotal administration of multi-wall carbon nanotube in intact male Fischer 344 rats. The Journal of toxicological sciences, 2009. 34(1): p. 65-76. 53. Soto, K., K. Garza, and L. Murr, Cytotoxic effects of aggregated nanomaterials. Acta Biomaterialia, 2007. 3(3): p. 351-358. 54. Brich, E.B., et al., Exposure and Emissions Monitoring during Carbon Nanofiber Production—Part I: Elemental Carbon and Iron–Soot Aerosols. The Annals of Occupational Hygiene, 2011. 55(9): p. 1016-1036. 55. BIRCH, M.E., Exposure and Emissions Monitoring during Carbon Nanofiber Production—Part II: Polycyclic Aromatic Hydrocarbons. Ann Occup Hyg, 2011. 55(9): p. 1037–1047. 56. Jelena, K.T., et al., Anthropogenic Carbon Nanotubes Found in the Airways of Parisian Children. EBioMedicine, 2015. 2: p. 697–1704. 57. Thamaraiselvan, R., et al., exposure to polysyclic aromatic hydrocarbon with special focus on cancer. Asian pacific jpurna; of tropical medicine, 2015. 5(3): p. 182-189. 58. Monographs on the Evluation of the carcinogenic Risk to Human, I.A.f.R.o.C. IARC, Editor. 2005. 59. Wannhoffa, A., et al., Oxidative and nitrosative stress and apoptosis in oral mucosa cells after ex vivo exposure to lead and benzo[a]pyrene. Toxicology in Vitro, 2013. 27(2): p. 915–921. 60. Mina, z. and m.s. Hamid, Carbon nanotubes play a role in the adsorption some of carcinogenic compounds, in Proceedings of the 4th International Conference on Nanostructures (ICNS4). 2012: Kish Island, I.R. Iran. 61. Wenhao, W., et al., Correlation and prediction of adsorption capacity and affinity of aromatic compounds on carbon nanotubes. Water Research, 2016. 88: p. 492-501. 62. Melanie, K., Z. Xiaoran, and H. Thilo, Sorption behavior of carbon nanotubes: Changes induced by functionalization, sonication and natural organic matter. Science of the Total Environment 2014. 497–498 p. 133–138. 63. Melanie, K., et al., Measuring and Modeling Adsorption of PAHs to Carbon Nanotubes Over a Six Order of Magnitude Wide Concentration Range. Environ. Sci. Technol, 2011. 45: p. 6011–6017. 64. Escudero, M., et al., A methodology for the quantification of the net African dust load in air quality monitoring networks. Atmospheric Environment, 2007. 41(26): p. 5516-24. 65. Prospero, J.M. and P.J. Lamb, African droughts and dust transport to the Caribbean: Climate change implications. Science, 2003. 5647(302): p. 1024-7. 66. Xinghu, i.X., et al., Effects of Carbon Nanotubes, Chars, and Ash on Bioaccumulation of Perfluorochemicals by Chironomus plumosus Larvae in Sediment. .Environ.Sci. Technol, 2012. 46: p. 12467–12475. 67. Xilong, W., et al., Sorption of Peat Humic Acids to Multi-Walled Carbon Nanotubes. Environ.Sci.Technol., 2011. 45(21): p. 9276–9283. 68. Kun, Y., Z. Lizhong, and X. Baoshan, Adsorption of Polycyclic Aromatic Hydrocarbons by Carbon Nanomaterials. Environ. Sci. Technol, 2006. 40(6): p. 1855-1861. 69. Zhenyu, W., et al., Adsorption and Desorption of Phenanthrene on Carbon Nanotubes in Simulated Gastrointestinal Fluids. Environ Sci Techno, 2011. 45(14): p. 6018-24. 70. Yongchun, L., et al., Chemical and Toxicological Evolution of Carbon Nanotubes During Atmospherically Relevant Aging Processes. Environmental Science & Technology, 2015. 71. Jie, D. and M. Qiang, Advances in mechanisms and signaling pathways of carbon nanotube toxicity. Nanotoxicology, 2015. 9(5): p. 658–676. 72. 2016; Available from: http://nanosafety.ir/index.php?actn=static_page&lang=1&id=598. 73. Tejral, G., N.R. Panyala, and J. Havel, Carbon nanotubes: toxicological impact on human health and environment. J Appl Biomed, 2009. 7: p. 1-13. 74. Li , S., N. Karin, and U.N. Gerd, Engineered nanoparticles interacting with cells: size matters. Journal of Nanobiotechnology, 2014. 12(5). 75. Coccinia, T., et al., Effects of water-soluble functionalized multi-walled carbon nanotubes examined by different cytotoxicity methods in human astrocyte D384 and lung A549 cells. Toxicology and Applied Pharmacology, 2010. 269: p. 41–53. 76. Amy, L.M., et al., Effects of nitrogen-doped multi-walled carbon nanotubes compared to pristine multi-walled carbon nanotubes on human small airway epithelial cells. Toxicology in Vitro, 2015. 3: p. 25–36. 77. Aldieri, E., et al., The role of iron impurities in the toxic effects exerted by short multiwalled carbon nanotubes (MWCNT) in murine alveolar macrophages. J Toxicol Environ Health A, 2013. 76(18): p. 1056-71. 78. Khaliullin, T.O., et al., In vitro toxic effects of different types of carbon nanotubes. Materials Science and Engin, 2015. 98. 79. Laura, R., et al., ulti-walled carbon nanotubes (NM401) induce ROS-mediated HPRT mutations in Chinese hamster lung fibroblasts. Environmental Research, 2016. 146: p. 185–190. 80. Satomi, F., et al., Asbestos and multi walled carbon nanotubes generate distinct oxidative responses in inflammatory cells. J. Clin. Biochem. Nutr, 2015. 56(1): p. 1-7. 81. Yury, R.Y., et al., Commercial single-walled carbon nanotubes effects in fibrinolysis of human umbilical vein endothelial cells. Toxicology in Vitro, 2015. 29: p. 1201–1214. 82. Yongbo, Y., et al., Combined toxicity of amorphous silica nanoparticles and methylmercury to human lung epithelial cells. Ecotoxicology and Environmental Safety 2015. 112: p. 144–152. 83. Senlin , L.u., et al., Comparison of cellular toxicity caused by ambient ultrafine particles and engineered metal oxide nanoparticle. Particle and Fibre Toxicology, 2015. 12(5). 84. Elena, R., et al., Single-walled Carbon Nanotubes: Geno- and Cytotoxic Effects in Lung Fibroblast V79 Cells. Journal of Toxicology and Environmental Health, Part A, 2007. 70: p. 2071-2079. 85. Katelyn, J.S., et al., Genotoxicity of multi-walled carbon nanotubes at occupationally relevant dose. Particle and Fibre Toxicology, 2014. 11(6). 86. Agathe, F., et al., In vitro toxicity of carbon nanotubes, nano-graphite and carbon black, similar impacts of acid functionalization. ARTICLE in TOXICOLOGY IN VITRO, 2015. 87. Asakura, M., et al., Genotoxicity and cytotoxicity of multi-wall carbon nanotubes in cultured Chinese hamster lung cells in comparison with chrysotile A fibers. J Occup Health, 2010. 52(3): p. 155-166. 88. Vermaa, N., et al., Benzo[a]pyrene-mediated toxicity in primary pig bladder epithelial cells: A proteomic approach. Journal of Proteomics, 2013. 85: p. 53-64. 89. Yiyi, Y., et al., In vitro toxicity of silica nanoparticles in myocardial cells. Environ Toxicol Pharmacol, 2010. 29(2): p. 131-7